Syllabus
CHEM1090
General Chemistry I
2019

Committee Members:
No representative, Central Community College
No representative, Little Priest Tribal College
No representative, Metropolitan Community College
Aaron McLean, Mid-Plains Community College
Dasha Weatherman, Nebraska Indian Community College
David Heidt, Northeast Community College
Alan Earhart, Southeast Community College
Dave Nelson, Western Community College
Facilitator: Dr. Aaron McLean

The Institution agrees to the contents in this syllabus including course prefix, number, course description and other contents of this syllabus.

Adopt

Manoj Patil
Chief Academic Officer, Little Priest Tribal College

Adopt

Manoj Patil (Apr 8, 2019)
Chief Academic Officer, Little Priest Tribal College

Decline

Thomas J McDonnell
Chief Academic Officer, Metropolitan Community College

Adopt

Thomas J McDonnell (Apr 17, 2019)
Chief Academic Officer, Metropolitan Community College

Adopt

Jody Tomanek
Chief Academic Officer, Mid-Plains Community College

Adopt

Jody Tomanek (Apr 5, 2019)
Chief Academic Officer, Mid-Plains Community College

Adopt

Kristine Sudbeck
Chief Academic Officer, Nebraska Indian Community College

Adopt

Kristine Sudbeck (Apr 15, 2019)
Chief Academic Officer, Nebraska Indian Community College

Adopt

Lyle Kathol
Chief Academic Officer, Northeast Community College

Adopt

Lyle Kathol (Apr 8, 2019)
Chief Academic Officer, Northeast Community College

Adopt

Dennis Headrick
Chief Academic Officer, Southeast Community College

Adopt

Dennis Headrick (Apr 5, 2019)
Chief Academic Officer, Southeast Community College

Adopt

Kim Kuster Dale
Chief Academic Officer, Western Nebraska Community College

Adopt

Kim Kuster Dale (Apr 6, 2019)
Chief Academic Officer, Western Nebraska Community College
I. CATALOG DESCRIPTION
Course Number: CHEM1090
Course Title: General Chemistry I
Prerequisite(s): Intermediate Algebra or Appropriate College Level Math Score

Catalog Description: This is the first course of a comprehensive chemistry sequence. Topics include nomenclature, atomic structure, chemical reactions, essentials of bonding, periodic properties, Valence Shell Electron Pair Repulsion Theory (VSEPR) theory, modern bonding theories, stoichiometry, thermochemistry, and the chemistry of solids, liquids, gases.

Credit Hours: 4 Semester; 6 Quarter
Contact Hours: 45 (lecture) / 30 (lab)

II. COURSE OBJECTIVES / COMPETENCIES
Course will:
1. Implement basic dimensional analysis.
2. Introduce basic structure of the atom.
3. Disseminate the properties of elements.
4. Describe the quantum-mechanical model of the atom.
5. Identify the properties of molecular shapes.
6. Identify inorganic compounds using correct nomenclature.
7. Describe chemical reactions by symbolic, numeric, and verbal means.
8. Introduce simple reactions.
9. Elaborate on energy transfer and basic thermodynamic relationships.
10. Delineate stoichiometric relationships.
11. Convey properties of gases and gas laws.
12. Introduce the principles of solutions and their concentrations.
13. Familiarize the student with the properties of acids and bases.
14. Delineate safe and appropriate laboratory techniques.

III. STUDENT LEARNING OUTCOMES:
Students will be able to:
1. Calculate one quantity from another by use of dimensional analysis.
2. Describe the structure of an atom.
3. Explain periodic trends.
4. Describe the changes as energy interacts with an atom.
5. Compare and contrast covalent and ionic bonding.
6. Draw Lewis structures for atoms, ions, and molecules.
7. Determine the shape of a molecule.
8. Determine correct International Union of Pure and Applied Chemistry (IUPAC) names and chemical formulas of compounds.
9. Describe chemical reactions by symbolic, numeric, and verbal means.
10. Predict the products of simple reactions.
11. Perform enthalpy calculations.
12. Interpret energy diagrams.
13. Perform stoichiometric calculations.
15. Calculate solution concentrations.
17. Demonstrate the ability to perform lab experiments safely, to interpret the data collected, and to draw reasonable conclusions based on the data.

IV. COURSE CONTENT / TOPICAL OUTLINE
1. Matter and measurement
2. Atomic theory and the periodic table
3. Atoms, molecules, and ions
4. Chemical reactions
5. Mass, moles, and stoichiometric relationships
6. Gases and gas laws
7. Thermochemistry
8. Quantum theory of the atom
9. Electron configurations and periodicity
10. Chemical bonding
11. Molecular geometry and bonding theories
12. States of matter

V. INSTRUCTIONAL MATERIALS
A. Required Text(s) Suggested
   1. OpenStax Chemistry, current ed.
   2. Chemistry, Burdge, current ed.
   4. General Chemistry, McQuarrie, current ed.
   5. General Chemistry, Ebbing, current ed.

VI. METHOD OF PRESENTATION/INSTRUCTION
1. Lecture
2. Discussion
3. Demonstration
4. Group activity
5. Application
6. On-Line
7. Distance education
8. Laboratory activities
VII. METHODS OF EVALUATION
Course grades, at the determination of the instructor, may be based on participation, assignments, exams, projects, papers, and lab work. Instructors will distribute and discuss evaluation and his/her grading policies with students at the beginning of each term.

VIII. INSTITUTIONAL DEFINED SECTION
(To be used at the discretion of each community college as deemed necessary)