Syllabus
CHEM1100
General Chemistry II
2019
Committee Members:
No representative, Central Community College
No representative, Little Priest Tribal College
No representative, Metropolitan Community College
Aaron McLean, Mid-Plains Community College
Dasha Weatherman, Nebraska Indian Community College
David Heidt, Northeast Community College
Alan Earhart, Southeast Community College
Dave Nelson, Western Community College
Facilitator: Dr. Aaron McLean

The Institution agrees to the contents in this syllabus including course prefix, number, course description and other contents of this syllabus.

Jody Tomanek (Apr 5, 2019)
Chief Academic Officer, Central Community College
Adopt

Manoj Patil (Apr 8, 2019)
Chief Academic Officer, Little Priest Tribal College
Not Offered

Thomas J McDonnell (Apr 17, 2019)
Chief Academic Officer, Metropolitan Community College
Decline

Manoj Patil (Apr 5, 2019)
Chief Academic Officer, Mid-Plains Community College
Adopt

Kristine Sudbeck (Apr 15, 2019)
Chief Academic Officer, Nebraska Indian Community College
Adopt

Lyle Kathol (Apr 8, 2019)
Chief Academic Officer, Northeast Community College
Adopt

Dennis Headrick (Apr 5, 2019)
Chief Academic Officer, Southeast Community College
Adopt

Kim Kuster Dale (Apr 6, 2019)
Chief Academic Officer, Western Nebraska Community College
Adopt
I. CATALOG DESCRIPTION

Course Number: CHEM1100
Course Title: General Chemistry II
Prerequisite(s): CHEM1090 - General Chemistry I

Catalog Description: This is the second course of a comprehensive chemistry sequence. Topics include solutions, kinetics, equilibrium, acid-base reactions, solubility, thermodynamics, and electrochemistry.

Credit Hours: 4 Semester; 6 Quarter
Contact Hours: 45 (lecture) / 30 (lab)

II. COURSE OBJECTIVES / COMPETENCIES

Course will:
1. Expand upon the correct structures and diagrams of atoms, ions, and molecules.
2. Integrate calculations involving concentrations and colligative properties.
3. Disseminate the effects of thermodynamic and kinetic factors on chemical reactions.
4. Describe the relationships between ion concentration and the equilibrium constant.
5. Introduce pH calculations involving strong acids, weak acids, strong bases, weak bases, salts, buffers, common-ion mixtures, and neutralization reactions.
6. Delineate solubility concepts to qualitative and quantitative situations.
7. Introduce the effects of enthalpy, entropy, and Gibb’s free energy on the spontaneity of chemical reactions.
8. Describe the principles of electrochemistry in multiple situations including the analysis of electrochemical cells.

III. STUDENT LEARNING OUTCOMES:

Students will be able to:
1. Calculate solution concentrations.
2. Apply principles of colligative properties.
3. Apply principles of chemical kinetics.
4. Perform calculations involving chemical equilibria.
5. Predict reaction outcomes based on chemical equilibria and LeChatlier’s principle.
6. Demonstrate an understanding of the properties of acids and bases, including pH, buffers, acid and base equilibria in weak acids and bases and acid-base equilibrium constants.
7. Describe the relationships between enthalpy, entropy, and Gibb’s free energy.
8. Demonstrate an understanding of oxidation-reduction reactions in terms of electron transfer.
9. Explain the electrical nature of reactions and electrochemical cells in terms of oxidation-reduction reactions.
10. Demonstrate the ability to perform lab experiments safely, to interpret the data collected, and to draw reasonable conclusions based on the data.
IV. COURSE CONTENT / TOPICAL OUTLINE
1. Solutions
2. Chemical kinetics
3. Chemical equilibria
4. Acids and bases
5. Thermodynamics
6. Electrochemistry

V. INSTRUCTIONAL MATERIALS
A. Required Text(s) Suggested
 1. OpenStax Chemistry, current ed.
 2. Chemistry, Burdge, current ed.
 4. General Chemistry, McQuarrie, current ed.
 5. General Chemistry, Ebbing, current ed.

VI. METHOD OF PRESENTATION/INSTRUCTION
1. Lecture
2. Discussion
3. Demonstration
4. Group activity
5. Application
6. On-Line
7. Distance education
8. Laboratory activities

VII. METHODS OF EVALUATION
Course grades, at the determination of the instructor, may be based on participation, assignments, exams, projects, papers, and lab work. Instructors will distribute and discuss evaluation and his/her grading policies with students at the beginning of each term.

VIII. INSTITUTIONAL DEFINED SECTION
(To be used at the discretion of each community college as deemed necessary)
"CHEM1100 - General Chemistry II - 2019" History

Document created by Tara Naughtin (naughtint@mpcc.edu)
2019-04-05 - 3:49:29 PM GMT- IP address: 72.15.173.125

Document emailed to Candace Walton (candacewalton@cccneb.edu) for signature
2019-04-05 - 3:56:25 PM GMT

Document emailed to Manoj Patil (manoj.patial@littlepriest.edu) for signature
2019-04-05 - 3:56:26 PM GMT

Document emailed to Thomas J McDonnell (tjmcdonnell3@mccneb.edu) for signature
2019-04-05 - 3:56:26 PM GMT

Document emailed to Jody Tomanek (tomanekj@mpcc.edu) for signature
2019-04-05 - 3:56:26 PM GMT

Document emailed to Kristine Sudbeck (ksudbeck@thenicc.edu) for signature
2019-04-05 - 3:56:26 PM GMT

Document emailed to Lyle Kathol (lylek@northeast.edu) for signature
2019-04-05 - 3:56:26 PM GMT

Document emailed to Dennis Headrick (dheadrick@southeast.edu) for signature
2019-04-05 - 3:56:26 PM GMT

Document emailed to Kim Kuster Dale (kim.dale@wncc.edu) for signature
2019-04-05 - 3:56:26 PM GMT

Document viewed by Jody Tomanek (tomanekj@mpcc.edu)
2019-04-05 - 3:58:13 PM GMT- IP address: 72.15.173.125

Document e-signed by Jody Tomanek (tomanekj@mpcc.edu)
Signature Date: 2019-04-05 - 3:58:45 PM GMT - Time Source: server- IP address: 72.15.173.125