Syllabus

PHYS 1100

Physical Science

2025

Committee Members:

N/A, Central Community College
Joe Sherwin, Metropolitan Community College
Jared Daily, Mid-Plains Community College
David Heidt, Northeast Community College
Paul Haar, Michael Harrison, & Kent Reinhard, Southeast Community College
Erandi Gunapala & Lorin King, Western Nebraska Community College
N/A, Little Priest Tribal College
N/A, Nebraska Indian Community College

Facilitator: Paul Haar

The Institution agrees to the contents in this syllabus including course prefix, number, course description and other contents of this syllabus.

இயிளிரிதி Chief Academic Officer, Central Comm	11/26/2024 nunity College	Adopt
Thurusa Billiot Chief Academic Officer, Little Priest Tr	11/13/2024 ibal College	Adopt
Tom McDonnell Chief Academic Officer, Metropolitan	11/13/2024 Community College	Decline
Jody Tomanck Chief Academic Officer, Mid-Plains Co	11/12/2024 mmunity College	Adopt
Kindrie alle Chief Academic Officer, Nebraska Indi	11/26/2024 an Community College	Adopt
Charlene Widener Chief Academic Officer, Northeast Cor	11/14/2024 mmunity College	Adopt
Jol Michaelis Chief Academic Officer, Southeast Cor	11/13/2024 mmunity College	Adopt
Grant Wilson	11/12/2024	Adont

Chief Academic Officer, Western Nebraska Community College

I. CATALOG DESCRIPTION

PHYS1100

Physical Science

Prerequisite: None

Description: A survey course in the physical sciences with emphasis on scientific processes and problem solving. Areas of study will include selected topics in physics, chemistry, astronomy, geology and meteorology. A scheduled laboratory will supplement classroom activities.

Credit Hours: 4 semester hours or 6 quarter hours

Lecture/classroom Hours: 45 hours

Laboratory Hours: 30 hours

II. COURSE OBJECTIVES/COMPETENCIES

Course will:

- 1. Develop skills in measuring and converting units within the metric systems
- 2. Foster critical thinking skills using the scientific method in examining physical science concepts
- 3. Relate scientific issues to societal and individual problems
- 4. Relate basic physical science concepts to everyday experiences
- 5. Explain basic chemical principles
- 6. Describe the basic structure, features and workings of the solar system and universe
- 7. Explain basic weather principles
- 8. Describe the dynamic nature of earth and its cycles

III. STUDENT LEARNING OUTCOMES:

Students will be able to:

From Objective/Competency 1:

- 1. Demonstrate knowledge of different types of measurements and units such as CGS and MKS (SI)
- 2. Demonstrate knowledge of measurements in different systems and co-relate them.

From Objective/Competency 2:

- 1. Solve problems relating to Newton's Laws of Motion and Gravitation
- 2. Evaluate situations involving momentum, energy and their conservation principles.

From Objective/Competency 3:

- 1. Demonstrate knowledge of how physical changes affect the environment.
- 2. Describe available energy resources and how they affect global climate changes

From Objective/Competency 4:

- 1. Describe heat flow relative to temperature
- 2. Demonstrate knowledge of electricity including magnetic fields and various phenomena

From Objective/Competency 5:

Nebraska Transfer Initiative PHYS1100 Updated: 2025

- 1. Demonstrate knowledge of chemical bonds and the properties of substances
- 2. Identify the characteristics of elements based on the periodic table

From Objective/Competency 6:

- 1. Demonstrate knowledge of uniform circular motion and elliptical motion with regard to the motion of celestial objects
- 2. Describe the components of the solar system

From Objective/Competency 7:

- 1. Demonstrate knowledge of weather fronts and systems.
- 2. Explain the seasonal changes in weather patterns

From Objective/Competency 8:

- 1. Demonstrate knowledge of the basic structures of a dynamic earth
- 2. Demonstrate knowledge of the components of earth materials

IV. COURSE CONTENT/TOPICAL OUTLINE

(Order of presentation at instructor's discretion)

- 1. Physics
- 2. Chemistry
- 3. Meteorology
- 4. Geology
- 5. Astronomy

V. INSTRUCTIONAL MATERIALS

A. Suggested Textbooks

- 1. Krauskopf, et.al., The Physical Universe, McGraw-Hill.
- 2. Shipman, et.al., An Introduction to Physical Science, Brooks/Cole
- 3. Tillery, *Physical Science*, McGraw-Hill
- 4. Open Educational Resources

B. Laboratory Manual/Book:

- 1. Tillery, Laboratory Manual to accompany Physical Science; McGraw-Hill
- 2. Garretson, Laboratory Studies in the Physical Sciences; Wm C Brown Publishers
- 3. Physical Science with Vernier
- 4. Instructor Generated Lab Manual/Worksheets

VI. METHOD OF PRESENTATION

Instructors will make use of varied pedagogical techniques including several of the following:

- A. Lectures
- B. Discussion groups
- C. Individual and/or collaborative projects
- D. Debates, research, peer response, journals, essays, conferences
- E. Computer –assisted instruction, interactive/creative methods, multi-media
- F. Field trips
- G. Online

Nebraska Transfer Initiative PHYS1100 Updated: 2025

VII. METHODS OF EVALUATION

- A. As determined by the instructor, course grades will be based on one or more of the following:
 - 1. Class and group participation
 - 2. Daily work, exams, presentations
 - 3. Projects, papers, and/or a portfolio
- B. The instructor will distribute and discuss evaluation and grading policies with students at the beginning/during of each term.

VIII. INSTITUTIONAL DEFINED SECTION