Syllabus

PHYS1410

Elementary General Physics I

2019

Committee Members:

No representative, Central Community College
No representative, Little Priest Tribal College
Kendra Sibbernsem, Metropolitan Community College
Jared Daily, Mid-Plains Community College
Dasha Weatherman, Nebraska Indian Community College
David Heidt, Northeast Community College
Paul Haar, Southeast Community College
Scott Schaub, Western Nebraska Community College

Facilitator: Paul Haar

The Institution agrees to the contents in this syllabus including course prefix, number, course description and other contents of this syllabus.

Adopt

Jody Tomanski (Apr 17, 2019)
Chief Academic Officer, Metropolitan Community College

Decline

Dennis Headrick (Apr 17, 2019)
Chief Academic Officer, Southeast Community College

Adopt

Kim Kuster Dale (Apr 23, 2019)
Chief Academic Officer, Western Nebraska Community College

Adopt

Manoj Patil (Apr 17, 2019)
Chief Academic Officer, Little Priest Tribal College

Not Offered

Manoj Patil (Apr 17, 2019)
Chief Academic Officer, Central Community College

Not Offered

Manoj Patil (Apr 17, 2019)
Chief Academic Officer, Little Priest Tribal College

Adopt

Kendra Sibbernsem (Apr 17, 2019)
Metropolitan Community College

Decline

Dashi Weatherman (Apr 17, 2019)
Nebraska Indian Community College

Adopt

David Heidt (Apr 17, 2019)
Northeast Community College

Adopt

Paul Haar (Apr 17, 2019)
Southeast Community College

Decline

Scott Schaub (Apr 17, 2019)
Western Nebraska Community College

Adopt

Lyle Kathol (Apr 17, 2019)
Chief Academic Officer, Northeast Community College

Adopt

Jody Tomanski (Apr 17, 2019)
Central Community College

Adopt

Jody Tomanski (Apr 17, 2019)
Mid-Plains Community College

Adopt

Kristine Sudbeck (May 16, 2019)
Chief Academic Officer, Nebraska Indian Community College

Adopt

Manoj Patil (Apr 17, 2019)
Little Priest Tribal College

Adopt

Manoj Patil (Apr 17, 2019)
Little Priest Tribal College
I. CATALOG DESCRIPTION
PHYS1410
Elementary General Physics I with algebra and trigonometry

Prerequisite/Corequisite: trigonometry or equivalent

Credit Hours: 5 (Semester) 7.5 (Quarter)
Contact Hours: Lecture 60 Lab 30

Course Description: Detailed algebra and trigonometry study of one and two dimensional motion. Topics will include kinematics, Newton’s Laws, energy, momentum, and rotational motion. Additional topics from the areas of oscillations and waves, fluids, and thermal physics may also be covered.

II. COURSE OBJECTIVES/COMPETENCIES
Course will:
1. Distinguish between vector and scalar quantities and teach vector operations.
2. Provide methods of analysis for 1-dimensional kinematics.
3. Introduce methods of analysis for multi-dimensional kinematics.
4. Define and apply Newton’s laws of motion.
5. Use the concepts of work and energy to solve problems.
6. Apply the concepts of impulse and momentum.
7. Implement the laws of conservation of energy and momentum.
8. Employ kinematics and dynamics in rotational systems.
9. Utilize laws of conservation of energy and momentum for rotational systems.
11. Provide experience communicating experimental results.

III. STUDENT LEARNING OUTCOMES
Students will be able to:
1. Conduct dimensional analysis.
2. Perform vector analysis.
3. Compare and contrast scalars and vectors.
4. Use displacement, velocity, acceleration, and time to analyze 1-dimension motion.
5. Analyze objects in multi-dimensional motion.
6. Determine relative velocity vectors from multiple points of reference.
7. Distinguish the relationship between motion and Newton’s three laws of motion.
8. Analyze forces and motion using Newton’s three laws of motion.
9. Determine forces and motion in situations that involve static and kinetic friction.
10. Use the work-energy theorem to relate work and energy.
11. Apply the properties of work, kinetic energy, gravitational potential energy, and spring potential energy using conservation of energy and the work-energy theorem.
12. Calculate properties of work, energy, and power.
13. Analyze the relationship between momentum, impulse, and collisions.
14. Demonstrate the conservation of momentum of objects before and after collision.
15. Analyze properties of angular displacement, angular velocity, angular acceleration, and centripetal acceleration.
16. Use torque, angular acceleration, and moment of inertia to analyze rotational motion and static equilibrium.
17. Apply the properties of conservation of energy and conservation of angular momentum.

IV. COURSE CONTENT/TOPICAL OUTLINE
(Sequence may vary)
1. Units and Measurement
2. Vectors
3. Linear Motion
4. Motion in Two and Three Dimensions
5. Newton’s Laws of Motion
6. Applications of Newton’s Laws
7. Work and Kinetic Energy
9. Linear Momentum and Collisions
10. Rotational Motion
11. Angular Momentum
12. Static Equilibrium

V. INSTRUCTIONAL MATERIALS
SUGGESTED TEXTBOOKS AND/OR MATERIALS
OpenStax College Physics – OER
College Physics – Knight, Jones, and Field
Physics – Giancoli
College Physics – Young

VI. METHODS OF PRESENTATION
Methods of presentation may include lecture, small group activities, videos, lab activities, worksheets, quizzes, online exploration, and student presentations.

VII. METHODS OF EVALUATION
1. Unit Tests
2. Comprehensive Final Exam
3. Quizzes
4. Assignments
5. Lab Activities

VIII. INSTITUTIONAL DEFINED SECTION
To be used at the discretion of each community college as deemed necessary.
"PHYS1410 - Elementary General Physics I - 2019" History

- Document created by Tara Naughtin (naughtint@mpcc.edu)
 2019-04-17 - 3:00:45 PM GMT - IP address: 72.15.173.125

- Document emailed to Candace Walton (candacewalton@cccneb.edu) for signature
 2019-04-17 - 3:10:14 PM GMT

- Document emailed to Manoj Patil (manoj.patil@littlepriest.edu) for signature
 2019-04-17 - 3:10:14 PM GMT

- Document emailed to Thomas J McDonnell (tjmcdonnell3@mccneb.edu) for signature
 2019-04-17 - 3:10:14 PM GMT

- Document emailed to Jody Tomanek (tomanekj@mpcc.edu) for signature
 2019-04-17 - 3:10:14 PM GMT

- Document emailed to Kristine Sudbeck (ksudbeck@thenicc.edu) for signature
 2019-04-17 - 3:10:14 PM GMT

- Document emailed to Lyle Kathol (lylek@northeast.edu) for signature
 2019-04-17 - 3:10:14 PM GMT

- Document emailed to Dennis Headrick (dheadrick@southeast.edu) for signature
 2019-04-17 - 3:10:14 PM GMT

- Document emailed to Kim Kuster Dale (kim.dale@wncc.edu) for signature
 2019-04-17 - 3:10:15 PM GMT

- Document viewed by Jody Tomanek (tomanekj@mpcc.edu)
 2019-04-17 - 3:24:51 PM GMT - IP address: 72.15.173.125